Reakční rychlost
Studiem reakční rychlosti se zabývá chemická kinetika.
Aby mohly spolu dvě či více látek reagovat, musí dojít ke srážce jejich molekul. Pravděpodobnost srážky se zvyšuje s rostoucí teplotou, tlakem a koncentrací látek.
Reakční rychlost (v) můžeme definovat jako rychlost úbytku reaktantů či rychlost přírůstku produktů, tedy např. pro reakci a A + b B → c C + d D:
Zabývejme se podrobněji vztahem mezi rychlostí reakce a koncentrací reaktantů. Uvažujme jednoduchou reakci X → Y. Její rychlost bude úměrná [X] podle rovnice:
(15) |
kde k je rychlostní konstanta.
V některých případech může být rychlost úměrná [X]2, může na [X] záviset složitěji, nebo naopak nemusí být na [X] závislá vůbec vůbec (v takovém případě probíhá reakce konstantní rychlostí). Přesný vztah mezi reakční rychlostí a koncentrací reaktantů je empirický fakt a – zejména bereme-li v úvahu reakce se složitějšími reakčními mechanismy – nedá se odvodit jen ze stechiometrie pozorované přeměny.
Chemici definují kinetický řád reakce podle počtu členů, jejichž koncentrace ovlivňují rychlost. Pokud rychlost na koncentraci nezávisí, a tedy platí rovnice v = k, hovoříme o řádu nultém. Je-li rychlost přímo úměrná koncentraci jednoho z reaktantů, jedná se o kinetiku prvního řádu (jako v případě výše uvedené reakce (15)). Jestliže je rychlost ovlivněna koncentrací dvou reaktantů nebo se jedná o exponenciální vztah jednoho reaktantu (v = k · [X] · [Y] nebo v = k · [X]2), hovoříme o kinetice druhého řádu atd.
Někdy chceme předpovědět, jaké množství reaktantu X zůstane nezreagováno po čase t od začátku reakce, nebo jak dlouho potrvá, než [X] klesne na polovinu. Při reakcích nultého řádu je výpočet jednoduchý, ale pro řády vyšší se komplikuje.
Pro reakci prvního řádu platí:
(16) |
Integrací rovnice (16) dostáváme:
(17) |
Řešením pro počátek reakce, tj. pro t = 0 (přičemž výchozí koncentraci látky X v tomto čase označíme jako [X]0) dostáváme
(18) |
(19) |
Tato rovnice popisuje exponenciální pokles koncentrace X v čase. Užitečným parametrem exponenciálního rozkladu je čas potřebný na snížení počáteční koncentrace (či množství) látky X na polovinu. Nazývá se poločas (t1/2). Z rovnice (19) můžeme poločas vyjádřit jako: