Kardiopulmonální monitoring
Neinvazivní kardiopulmonální monitoring[upravit | editovat zdroj]
Neinvazivní kardiopulmonální monitoring zahrnuje údaje o srdeční frekvenci, dechové frekvenci, tlaku krve (neinvazivní měření NIBP), pulzní oxymetrii a EKG.
Srdeční a dechová frekvence (SF, DF)[upravit | editovat zdroj]
Nejlepší je kontinuální monitoring s nastavitelnými hodnotami alarmu. Orientačně lze SF určit spočítáním tepů během 6 sekund a výsledek násobit 10x. Při hodnocení DF je nutné určit hodnotu počítáním během 1 minuty, neboť dechová frekvence je pomalejší a variabilnější než srdeční a při kalkulaci za kratší časové období bychom riskovali chybný výpočet. Vždy nastavujeme horní a spodní hranice alarmu, hodnoty závisí na věku dítěte i na základním onemocnění. Z hlediska DF je nejdůležitější alarm pro záchyt apnoe, což je v medicíně superurgentní stav. Hranici pro apnoe obvykle stanovujeme na 15 sekund.
Normální hodnoty srdeční a dechové frekvence | ||
---|---|---|
normální dechová frekvence (za minutu) | normální srdeční frekvence (za minutu) | |
novorozenci | 40–60 | 100–180 |
kojenci | 30–50 | 80–150 |
batolata | 25–40 | 80–130 |
předškoláci | 25–35 | 80–120 |
mladší školáci | 20–30 | 70–100 |
starší školáci | 12–20 | 60–100 |
dospělí | 12–16 | 60–90 |
Neinvazivní měření tlaku krve (NIBP)[upravit | editovat zdroj]
Z obecného hlediska by měření TK by mělo být rutinní u dětí starších 3 let, jednoznačně preferujeme rtuťový manometr s auskultačním měřením. Při měření TK by se mělo stát pravidlem současné měření výšky a hmotnosti dítěte. Pokud při měření zjistíme hodnoty TK přesahující 90–95, automaticky změříme TK i na dolní končetině. TK na dolních končetinách bývá o 10–20 mmHg vyšší. V žádném případě by TK na horních končetinách neměl přesahovat TK na dolních končetinách. V takovém případě máme vážné podezření na koarktaci aorty.
Fyziologické hodnoty respirace | ||||
---|---|---|---|---|
novorozenec | kojenec | batole | starší dítě | |
Tidal volume | 8 | 8 | 8 | 8 |
Resistance | 40 | 20–30 | 20 | 1–2 |
Compliance | 3–5 | 10–20 | 20–40 | 70–100 |
U některých dětí jsou při měření TK ozvy slyšitelné případně až k hodnotě 0 mmHg. V těchto případech se doporučuje měření opakovat s menším tlakem na hlavu stetoskopu. Pokud stále ozvy slyšíme až k hodnotě 0 mmHg, je třeba zaznamenat hodnotu diastolického TK při prvním zřetelném oslabení ozev. Šíře manžety tonometru by měla představovat cca 40 % obvodu paže, úzká manžeta je zdrojem falešně vysokých hodnot TK, příliš široká manžeta je zase příčinou falešně nižších hodnot TK (v tomto případě je ale významnost chyby pouze malá). Šíří manžety tonometru se rozumí její vnitřní, tj.gumová část.
Paže na níž měříme TK, má být zcela volná (dítě by tedy mělo být alespoň do půli těla svlečené), manžetu umístíme do středu paže mezi olecranon a acromion. Zjistíme-li hraniční hodnoty TK, měření nutno opakovat.
Neinvazivní monitoring TK:
- oscilometricky (nejčastěji)
- sfygmomanometricky (rtuťový tonometr) – určujeme Korotkovovy fenomény (přesnost měření ovlivňuje správný výběr manžety)
- dopplerovský princip
U dětí na JIP je rtuťový tonometr nevýhodný u nejmenších dětí, u nespolupracujících a v případě nutnosti frekventního měření.
Dopplerovská technika je vhodná u malých dětí a u stavů se zhoršenou perfuzí. Malá dopplerovská sonda je umístěna nad radiální nebo brachiální arterii. Pohyb krve je výborně snímán senzitivním ultrazvukem. Manžeta umístěna na horní části paže je nafukována, dokud dopplerovský signál zcela nevymizí. Následně je pomalu vypouštěna. Systolický tlak je odečten ve chvíli, kdy se objeví první dopplerovský signál, diastolický tlak je odečten ve chvíli, kdy délka a kvalita signálu klesá. Korelace s tlakem měřeným přímo intraarteriálně je dobrá, ale metoda není vhodná ke kontinuálnímu měření.
Oscilometrická metoda je snadno proveditelná. Při nafouknuté manžetě proud krve v arterii vyvolává oscilace. Pokud tlak v manžetě začne klesat, přístroj registruje hodnotu sTK, dTK a MAP. Všechny techniky však mají omezení u stavů s významným poklesem srdečního výdeje, těžké hypotenze nebo při systémové vazokonstrikci, u stavů s generalizovanými edémy, u extrémní obezity.
Věková skupina | Rozměr manžety |
---|---|
Nedonošenci | 3,75 |
Novorozenci | 4,0 |
Malé děti < 5 let | 7,0 |
Děti školního věku | 11,0 |
Vedle systolického TK a diastolického tlaku je velmi důležité stanovení tzv. středního arteriálního tlaku (mean arterial pressure, MAP). MAP reprezentuje orgánový perfuzní tlak, je vhodný k posouzení oběhového selhání a k definování hypotenze. Není aritmetickým průměrem systolického sTK a diastolického dTK.
MAP = (sTK + 2x dTK) / 3
Nepřímé metody měření TK mají omezenou přesnost, proto u závažných stavů jako je šok, poruchy rytmu, podávání vazoaktivních látek je nutný intraarteriální monitoring.
Věk | MAP |
---|---|
Novorozenec | < 40 |
3.–6. měsíc | < 40 |
6.–12. měsíc | < 45 |
1–4 roky | < 50 |
4–10 let | < 55 |
10–14 let | < 60 |
14–18 let | < 65 |
>18 let | < 70 |
Velkou výpovědní hodnotu u šokových stavů má tzv. perfuzní tlak (perfusion pressure). Aritmeticky jde o rozdíl mezi MAP a CVP:
Věk | Perfuzní tlak |
---|---|
Novorozenci | 55 |
Kojenci | 60 |
Batolata | 65 |
Předškoláci | 65 |
Školácí | 65 |
Pulzní oxymetrie[upravit | editovat zdroj]
Pulzní oxymetrie neinvazivně měří saturaci hemoglobinu kyslíkem v arteriální části krevního řečiště (pulzatilní tok).
Astrup – vyšetření krevních plynů[upravit | editovat zdroj]
Cílem vyšetření krevních plynů je získat údaje umožňující posoudit oxygenační funkci plic, adekvátnost alveolární ventilace a společně s dalšími parametry biochemického vyšetření detekovat případnou existenci poruchy ABR a určit stupeň její kompenzace.
Kapnometrie, kapnografie[upravit | editovat zdroj]
Měření koncentrace CO2 (kapnometrie) a grafické znázornění průběhu této hodnoty (kapnografie) ve vydechovaném vzduchu je založeno na měření absorpce infračerveného světla.
Za normálních okolností je gradient mezi arteriální tenzí paCO2 a tenzí CO2 na konci výdechu (end-tidal CO2 = etCO2) 2–5 torr (0,25–0,66 kPa) a odráží velikost ventilačního mrtvého prostoru a poměr velikosti dechového objemu a mrtvého prostoru. Zvětšení anatomického nebo alveolárního mrtvého prostoru za patologických stavů, při nichž dochází ke snížení plicní perfuze, vede ke zvýšení gradientu mezi paCO2 a etCO2. V praxi se tato změna obvykle manifestuje snížením hodnoty etCO2.
Klinické příčiny nárůstu gradientu mezi paCO2 a etCO2 :
- zvětšení anatomického mrtvého prostoru;
- zvětšení alveolárního mrtvého prostoru;
- hypotenze;
- nízký srdeční výdej;
- vysoký PIP a/nebo PEEP;
- plicní embolie;
- bronchospasmus.
Nejpoužívanější indexy hodnotící respirační složku[upravit | editovat zdroj]
PF index[upravit | editovat zdroj]
U nemocných se závažnými formami plicní dysfunkce se pro posouzení oxygenační funkce plic často používá PF index = hypoxemický index = Horowitzův index. Jeho stanovení vyžaduje vyšetření krevních plynů při znalosti FiO2. Aktuální hodnota je výrazně závislá na použitém parametru FiO2 a úrovni tlaků v dýchacích cestách v době vyšetření krevních plynů. U nemocných s hyperkapnií může být nutné zohlednit i vliv změn parciálního tlaku CO2, neboť při výrazném vzestupu parciálního tlaku CO2 v alveolech dochází k poklesu pAO2 a následně i paO2.
PFi = paO2 : FiO2
- FiO2 uvádíme jako desetinné číslo
- paO2 uvádíme v torrech
Normální hodnoty jsou > 500, hodnoty < 300 představují acute lung injury, hodnoty < 200 jsou jedním z kritérií určujících definici ARDS. PFi < 200 odpovídá hodnotě plicního zkratu > 20 %.
Horowitzův index - YouTube video
Alveolo–arteriální kyslíkový gradient A-aDO2[upravit | editovat zdroj]
Alveolo–arteriální kyslíkový gradient A–aDO2, někdy označovaný jako alveolo–arteriální diference je parametr používaný pro hodnocení stupně poruchy oxygenační funkce plic. Ukazuje především na kvalitu alveolokapilární difúze.
A–aDO2 = pAO2 − paO2
A–aDO2 = (760 x FiO2) − {(paO2 + paCO2) + 47}
- FiO2 uvádíme jako desetinné číslo
- paO2 a paCO2 uvádíme v torrech
- 760 = barometrický tlak na hladině moře
- 47 = parciální tlak vodních par ve vdechovaném vzduchu
Tento vzorec lze využít pokud máme k dispozici údaje o koncentraci inhalovaného O2 a hodnoty arteriálních plynů. Hodnoty >350 svědčí pro respirační insuficienci, hodnoty >550 jsou jedním z kritérií k ECMO (mimotělní membránová oxygenace).
Oxygenační index[upravit | editovat zdroj]
Oxygenační index OI se hojně využívá v pediatrii, na rozdíl od PFi odráží i tlakové změny.
OI = (FiO2 x Pmaw) : paO2
- FiO2 uvádíme v procentech!
- Pmaw uvádíme v cmH2O.
- paO2 uvádíme v torrech.
Normální hodnoty jsou < 5.
Ventilace mrtvého prostoru[upravit | editovat zdroj]
Pro orientační posouzení poměru mezi velikostí funkčního mrtvého prostoru a velikostí dechového objemu (Vd/Vt) je používáno stanovení rozdílu mezi arteriální tenzí CO2 a tenzí CO2 ve vydechované směsi na konci výdechu (etCO2). Za normálních okolností je tento rozdíl minimální (2–5 torr), za patologických okolností výrazně stoupá.
Vd/Vt = (paCO2 − etCO2) : paCO2
Dochází-li při zvyšování tlaku v dýchacích cestách (např. po úpravě PEEP) k nárůstu tohoto parametru bez současného příznivého vlivu zvýšení tlaku na oxygenaci, je to možné považovat za známku překročení optimální hodnoty tlaku v dýchacích cestách. Při poklesu srdečního výdeje nebo tlaku v plicním řečišti obdobně může docházet ke změnám velikosti poměru Vd/Vt.
U normálních subjektů je hodnota Vd/Vt v rozmezí 0,2–0,3. Vzestup Vd/Vt je spojen jak s rozvojem hypoxemie, tak hyperkapnie. K hyperkapnii obvykle dochází, je-li Vd/Vt větší než 0,5.
Gastrická tonometrie[upravit | editovat zdroj]
Principem metody je regionální měření parciálního tlaku CO2 (PtCO2) sliznice žaludku. Pomocí této metody můžeme velmi brzy detekovat poruchy perfúze splanchnické oblasti, která se projeví velmi časným vzestupem slizničního PtCO2.
Invazivní kardiopulmonální monitoring[upravit | editovat zdroj]
Invazivní měření TK[upravit | editovat zdroj]
Měření arteriálního krevního tlaku je nezbytnou součástí sledování každého akutního stavu. Střední arteriální tlak MAP závisí na srdečním výdeji CO a systémovém odporu SVR:
MAP = CO x SVR
Pro děti je nutné použít indexované hodnoty uvedených parametrů, tj. hodnoty vztažené na povrch těla. Potom rovnice bude vypadat takto :
MAP = CI x SVRI
Rovnice sama ukazuje na hranice v měření arteriálního krevního tlaku. Krevní tlak neinformuje o proudění krve. Může být proto normální i při stoupajícím periferním odporu a současně se snižujícím srdečním výdeji, a tedy i při sníženém prokrvení orgánů. MAP tedy považujeme jen za hrubý indikátor prokrvení orgánů, zvláště když mnohé orgány mají schopnost autoregulace, tj. jejich prokrvení je v širokém rozmezí perfuzních tlaků udržováno prostřednictvím změn cévního odporu konstantní.
Arteriální TK měříme přímo nebo nepřímo. Nepřímé metody jsou jednoduché a neinvazivní. Přímé metody jsou přesnější. Rozdíly mezi nepřímým a přímým měřením krevního tlaku jsou zřejmé především u šoku, hypertenze, hypotermie a obezity.
Výhody přímého měření TK:
- nepřetržité sledování;
- trvalá přesnost měření;
- rychlé rozeznání oběhových poruch;
- přímé sledování hemodynamických účinků poruch srdečního rytmu;
- nepřímé hodnocení kontraktility myokardu z rychlosti vzestupu arteriální tlakové křivky;
- odhad tepového objemu ze systolické části tlakové křivky;
- přístup do arterie k odběru krevních vzorků: Astrup a další laboratoř.
Indikace:
- hemodynamicky nestabilní pacient: šokové stavy, hypertenzní krize, hypotenze;
- nitrolební hypertenze;
- nutnost podávání vazoaktivních látek: katecholaminy, nitroprusid sodný;
- ventilačně nestabilní pacient (nutnost opakovaného a častého vyšetření krevních plynů);
- nutnost opakovaných krevních odběrů;
- pravidelné odběry krevních vzorků;
- angiografické vyšetření;
- hemofiltrace/hemoperfuze.
Centrální žilní tlak, CVP[upravit | editovat zdroj]
Centrální žilní katetr je katetr, jehož distální konec leží v duté žíle. Normální hodnoty centrálního žilního tlaku CVP jsou 2–12 cm H2O (ideal 3–10 cm H2O).
Převodní vztahy:
- 1 cm H2O = 0,74 mmHg
- 1 mmHg = 1,36 cm H2O
- 1 kPa = 7,5 mmHg = 10,2 cm H2O
Snížené hodnoty CVP nacházíme při hypovolemii.
Zvýšené hodnoty CVP při hypervolemii, insuficienci pravého srdce, plicní embolii, obstrukci horní duté žíly, srdeční tamponádě.
Katetry pro dlouhodobé zavedení jsou opatřeny povrchem s antibakteriálním působením. V současné době jsou všechny katetry radiokontrastní. K eliminaci rizik jsou nejnovější katetry opatřeny jednocestnou chlopní k prevenci vzduchové embolie.
Při volbě přístupu do horní duté žíly je třeba respektovat zvláště tyto faktory: zkušenosti lékaře s určitou metodou, přístupnost žil vhodných k punkci, rizika jednotlivých přístupů pro určitého pacienta a předpokládanou dobu zavedení katetru.
K dlouhodobé kanylaci dáváme přednost centrálnímu přístupu (v. jugularis interna, v. subclavia), protože takto zavedené katetry mají nižší riziko infekčních a trombotických komplikací než katetry zavedené z periferie (swimming katetry). Nikdy nezavádíme katetry infikovaným místem vpichu.
Centrální žilní kanylace je v intenzivní péči velmi častým výkonem. Dostupnost kvalitních setů rozšířila její použití i bezpečnost. V této souvislosti je vhodné zdůraznit potřebu správné indikace a odbornou pokoru lékaře v rozhodovacím postupu, včetně striktního dodržování metodiky pro jednotlivé přístupy.
Polohu každého CVK musíme zkontrolovat a popřípadě upravit, abychom předešli těžkým komplikacím. Optimální poloha je bezprostředně před ústím horní duté žíly do pravé síně. V této oblasti již nejsou žádné žilní chlopně. Jsou vhodné dva postupy: RTG snímek hrudníku a EKG kontrola svodem ze špičky katetru. Na RTG kontrolním snímku hrudníku je důležitým orientačním bodem pro polohu konce centrálního žilního katetru carina tracheae. Karina leží vždy kraniálně od perikardu. Z hlediska bezpečnosti musí ležet konec katetru těsně nad karinou. EKG diagnostika je jednoduchá, bez velkých nákladů, a proto bychom jí měli dávat přednost před méně pohotovým a dražším RTG zobrazením. Polohu špičky katetru v pravé síni poznáme podle zřetelně zvýšené vlny P v EKG obrazu na monitoru. Katetr pak povytáhneme tak daleko, dokud se na monitoru opět neobjeví normální vlna P. Konec katetru nyní leží správně v horní duté žíle.
Saturace hemoglobinu v centrálním venózním systému – SvO2[upravit | editovat zdroj]
U kriticky nemocného pacienta je zásadní určit, jestli je dodávka kyslíku do tkání adekvátní vzhledem ke tkáňové potřebě kyslíku. Monitorace SvO2 umožňuje celkem přesně stanovit schopnost, zda je tkáňová potřeba kyslíku v rovnováze s její dodávkou. SvO2 představuje průměrné procento s navázaným kyslíkem ve smíšené žilní krvi.
Dodávka kyslíku tkáním je základním úkolem kardiovaskulárního systému a přímo závisí na srdečním výdeji, saturaci O2 v arteriální krvi SaO2 a koncentraci hemoglobinu. Dostatečnou dodávku kyslíku tkáním zajišťuje SaO2 > 92 % a optimální hodnota hemoglobinu (závisí na věku dítěte). Srdeční výdej je neméně důležitou komponentou udržení dobré oxygenace tkání. V kritických stavech je vždy úsilím maximalizovat srdeční výdej manipulací s preloadem, afterloadem, kontraktilitou a srdeční frekvencí.
Fyziologická hodnota SvO2 představuje rozmezí 60–80 % a znamená, že tkáňová potřeba kyslíku je pokryta dostatečnou dodávkou. Při významných odchylkách je třeba vždy přehodnotit hodnoty SaO2, Hb, CO/CI a spotřeby O2.
Změny hodnot SvO2, které požadují přehodnocení stavu pacienta:
- změna o plus/mínus 10 % přetrvávající minimálně 5 minut
- pokles < 60 % nebo vzestup > 80 %
- trend ukazující postupný, ale trvalý pokles
Pokles SvO2 ukazuje, že pacient musí využít zásoby O2 pro pokrytí své potřeby. Dochází k tomu v situaci, kdy klesá dodávka O2 navzdory stejné nebo zvýšené potřebě O2, nebo pokud potřeba O2 vzrůstá navzdory stejné nebo snížené dodávce O2.
Zvýšenou hodnotu SvO2 nacházíme v případě zvýšené dodávky O2 navzdory stejné nebo snížené potřebě, nebo při snížené potřebě O2 navzdory stejné nebo zvýšené dodávce.
Stavy se sníženou hodnotou SvO2:
- snížená dodávka O2:
- snížený srdeční výdej,
- vysoký PEEP,
- kardiogenní šok,
- hypovolemie,
- hypotenze,
- arytmie.
- snížení SaO2:
- hypoxie,
- respirační selhání,
- dyspnoe,
- pokles hemoglobinu (anémie, krvácení).
- zvýšená potřeba O2:
- hypertermie,
- bolest,
- zvýšená fyzická aktivita,
- křeče,
- zvýšená dechová práce.
Stavy se zvýšenou hodnotou SvO2:
- zvýšená dodávka O2:
- zvýšený srdeční výdej (inotropika, sepse),
- zvýšení SaO2 (vysoké FiO2, hyperoxie),
- zvýšený Hb (transfuze).
- snížená potřeba O2:
- hypotermie,
- anestezie.
- další příčiny zvýšení SvO2:
- VVV srdce s L–P zkratem,
- nekróza tkáně,
- toxicita nitroprusidu,
- septický šok.
Základní fyziologické výpočty ventilace[upravit | editovat zdroj]
Dodávka kyslíku (oxygen delivery, DO2)[upravit | editovat zdroj]
Dodávka kyslíku (oxygen delivery, DO2) je přímo úměrná srdečnímu výdeji a obsahu kyslíku v arteriální krvi (arterial oxygen content, CaO2). Pro pediatrii vždy volíme indexované hodnoty, tj. hodnoty vztažené k tělesnému povrchu.
DO2 (index) = CI x CaO2 x 10
CI = HR x SV
CaO2 = (Hb x 1,34 x SaO2) + (0,003 x PaO2)
CvO2 = (Hb x 1,34 x SvO2) + (0,003 x PvO2)
a–v DO2 = CaO2 − CvO2
DO2 = oxygen delivery, představuje kyslík dodávaný tkáním za minutu, referenční hodnoty DO2 = 550–650 ml/min/m2
SV = stroke volume = tepový objem
HR = heart rate = srdeční frekvence
CI = cardiac index = srdeční index → jde o srdeční výdej vztažený na jednotku povrchu těla
CaO2 = obsah kyslíku v arteriální krvi, referenční hodnoty CaO2 = 17–20 ml
CvO2 = obsah kyslíku ve smíšené venosní krvi, referenční hodnoty CvO2 = 12–15 ml
SaO2 = saturace arteriální krve O2, je uváděna jako SaO2/100
SvO2 = saturace smíšené žilní krve, je uváděna jako SvO2/100
PaO2 = parciální tlak kyslíku v arteriální krvi, je uváděn v torrech
PvO2 = parciální tlak kyslíku ve smíšené žilní krvi, je uváděn v torrech
a–v DO2 = arteriovenosní rozdíl kyslíku (oxygen content difference), referenční hodnoty a–v DO2 = 3–5 ml/dl
Hb = hemoglobin, je uváděn v množství g/dl !
Spotřeba kyslíku (oxygen consumption, oxygen uptake, VO2)[upravit | editovat zdroj]
Mírou spotřeby O2 je VO2 (oxygen consumption, oxygen uptake), referenční hodnoty VO2 (index) = 120–200 ml/min/m2
VO2 (index) = CI x (CaO2 − CvO2) x 10
Základním úkolem kardiopulmonální jednotky je zabezpečit rovnováhu mezi VO2 a DO2. Rovnováhu určuje :
- obsah kyslíku ve smíšené venozní krvi CvO2
- extrakce O2 (oxygen extraction, O2ER), tj. podíl mezi množstvím spotřebovaného a dodaného kyslíku VO2/DO2, které se vyjadřuje v procentech.
Normální jsou hodnoty extrakce kolem 25 %, ale při výrazně zvýšené potřebě tkání může extrakce O2 stoupnout k 50 %. V rámci šokových stavů se snažíme udržovat extrakci kyslíku pod 30 %.
O2ER = VO2 / DO2
CvO2 i O2ER závisí na hodnotách saturace smíšené žilní krve SvO2 a srdečním výdeji CO. CO/CI závisí na hodnotě srdeční frekvence, tepovém objemu, preloadu, afterloadu a kontraktilitě. Zvýšení srdeční frekvence, zlepšení kontraktility a relaxace myokardu v diastole, optimalizace preloadu a afterloadu zvyšují CO/CI. Kapacita přenášeného kyslíku může být zlepšena optimalizací hematokritu. Zlepšením všech těchto parametrů může být navýšena DO2. V některých specifických situacích (horečka, sepse, trauma, tyreotoxikóza) mohou metabolické potřeby převýšit i normální DO2.
Základní fyziologické výpočty ventilace | ||
---|---|---|
Parametr | Jednotka | Norma |
CaO2 | ml | 17–20 |
CvO2 | ml | 12–15 |
a–vDO2 | ml/dl | 3–5 |
DO2 (index) | ml/min/m2 | 550–650 |
VO2 (index) | ml/min/m2 | 120–200 |
O2ER | % | 20–35 |
Hemodynamika[upravit | editovat zdroj]
Možnosti monitoringu[upravit | editovat zdroj]
Systém PiCCO[upravit | editovat zdroj]
Systém PiCCO (Pulse Contour Cardiac Output) je oproti Swan-Ganzovu plicnicovému katétru metodou méně invazivní – ke stanovení srdečního výdeje vyžaduje zavedení centrálního žilního katétru a termodilučního arteriálního katetru (zavedeného cestou a.axillaris resp. a.radialis nebo častěji a.femoralis), bez nutnosti katetrizace pulmonální artérie. Pomocí tohoto systému lze vedle srdečního výdeje stanovit i objemové parametry preloadu a kvantifikovat plicní edém.
Srdeční výdej je intermitentně měřen transpulmonální termodilucí a kontinuálně analýzou tepové křivky. Během tří bolusových termodilučních měření dochází k analýze a kalibraci tvaru tepové křivky, trvalým porovnáváním těchto „kalibrovaných” křivek a několika po sobě jdoucích tepových křivek je potom kontinuálně monitorován srdeční výdej. Vzhledem k tomu je nutný pravidelný srdeční rytmus, systém selhává v přítomnosti arytmií (např. fibrilace síní).
Při náhlých výkyvech v hemodynamice je nutné znovu kalibrovat pomocí termodiluce (standardně se kalibrace provádí minimálně po 6 hodinách).
Systém PiCCO užívá analýzu termodiluční křivky a znalost jednotlivých objemů (end-diastolické objemy komor i síní) z termodilučních měření mezi místem aplikace a detekce indikátoru (roztok o známé teplotě). Z objemů určených termodilučními technikami mezi místem aplikace a detekce lze dále vypočítat „extravaskulární plicní tekutinu” (extravaskular lung water, EVLW) ke kvantifikaci plicního edému. Jde o rozdíl mezi celkovým obsahem tekutiny v plicích (pulmonary thermal volume, PTV) a intravaskulární plicní tekutinou (pulmonary blood volume, PBV).
Systém LiDCCO[upravit | editovat zdroj]
Variantou tohoto systému je systém využívající místo termodiluce diluci chloridu lithia (LiDCO). Kalibrace se provádí detekcí přítomnosti LiCl v periferní arteriální krvi (a.radialis) po jeho bolusovém podání do venózní části cévního řečiště. Následným porovnáváním tepových křivek je kontinuálně monitorován srdeční výdej.
Vedle rutinních metod jako je měření CVP nebo aTK umožňují moderní termodiluční metody a možnost analýzy pulzové křivky arteriálního tlaku (např. metoda PICCO) určit podrobnější hemodynamické parametry. Pro potřebu pediatrie jsou nejdůležitější indexované hodnoty jednotlivých parametrů, které jsou vztaženy na povrch těla a dovolují tak srovnání mezi hodnotami různých pacientů.
Parametry definující preload[upravit | editovat zdroj]
Vedle CVP (tlakový parametr definující preload pravé komory), který je nejčastěji užívaným markerem preloadu, můžeme v rámci podrobnějších hemodynamických měření sledovat řadu dalších parametrů :
- global enddiastolic volume (GEDV) udává objem krve obsažený ve všech 4 dutinách srdce na konci diastoly
- intrathoracic blood volume (ITBV) udává objem krve obsažený ve všech 4 dutinách srdce na konci diastoly + objem krve v plicních cévách
ITBV a GEDV vykazují větší senzitivitu a specificitu k určení srdečního preloadu než standardní plnící tlaky CVP a PAWP, ale také než enddiastolický objem pravé komory vypočtený echokardiografií. Další výhodou ITBV a GEDV je, že neinterferují s umělou plicní ventilací. U dětí, jak již bylo řečeno výše, je nutno využívat indexované hodnoty, tj. GEDVI a ITBVI.
U pacientů na UPV můžeme využít dalšího parametru hemodynamiky – variace tepového objemu (stroke volume variation, SVV – parametr dynamický). SVV odráží změny srdečního preloadu v závislosti na cyklech UPV. Vzestup hodnoty SVV může predikovat potřebu volumexpanze
Parametry definující afterload[upravit | editovat zdroj]
V praxi jako determinantu afterloadu vyhodnocujeme systémovou a plicní vaskulární rezistenci (na principu Ohmova zákona). Při znalosti hodnot CO můžeme vypočítat hodnotu systémové vaskulární rezistance (systemic vascular rezistance, SVR) :
SVR = (MAP − CVP) x 80 / CO
PP = MAP − CVP
SVR = (MAP − CVP) x 80 / CO = PP x 80 / CO
- PP = perfussion pressure; rozdíl středního arteriálního tlaku a centrálního žilního tlaku
Indexovanou hodnotou SVR vztaženou na plochu těla je SVRI :
SVRI = (MAP − CVP) x 80 / CI = PP x 80 / CI
Na základě těchto vztahů je tedy možné snížením vaskulární rezistence zvýšit srdeční výdej, zároveň z toho vyplývá, že dobrý krevní tlak nemusí značit dobrý srdeční výdej – vaskulární rezistence může stoupat při současně klesajícím srdečním výdeji!
Analogicky pro plicní vaskulární rezistance platí :
PVR = (MPAP − PAOP) x 80 / CO
resp.
PVRI = (MPAP − PAOP) x 80 / CI
MPAP je střední tlak v plicnici (mean pulmonary artery pressure) a PAOP je zaklíněný tlak v a.pulmonalis (pulmonary artery opening pressure). Nezaměňovat s tlakem v zaklínění a.pulmonalis PAWP (pulmonary artery wedge pressure).
Extravaskulární plicní voda[upravit | editovat zdroj]
Extravascular lung water (EVLW) a její index EVLWI udává objem volné vody v plicích a umožňuje bedside kvantifikaci závažnosti plicního edému. Vedle plicního edému koreluje se závažností ARDS nebo s délkou UPV. Je lepším indikátorem plicního edému než RTG hrudníku.
Hemodynamické parametry | |||
---|---|---|---|
Parametr | Jednotka | Norma | |
Srdeční výdej | CI (cardiac index) | l/min/m2 | 3,0–4,5 (5,5) |
SVI (stroke volume index) | ml/m2 | 30–60 | |
SvcO2 | % | 65–75 % | |
Preload | CVP (central venous pressure) parametr tlakový |
cm H2O | 3–10 |
GEDVI (global enddiastolic volume index) parametr objemový |
ml/m2 | 390–590 | |
ITBVI (intrathoracic blood volume index) parametr objemový |
ml/m2 | 550–850 | |
SVV (stroke volume variation) parametr dynamický |
% | ≤ 10 | |
PPV (pulse pressure variation) parametr dynamický |
% | ≤ 10 | |
Plíce | EVLWI (extravascular lung water index) | ml/kg | 3,0–7,0 |
Afterload | MAP | torr (mmHg) | dle věku |
SVRI (systemic vascular rezistance index) | dyne.s.cm/5.m/2 | 800–1600 1600–2400 (u dospělých) | |
PVRI (pulmonary vascular rezistance index) | dyne.s.cm/5.m/2 | 250–430 | |
Kontraktilita | CFI | l/min | 4,5–6,5 |
GEF | % | 25–35 | |
EF (ejekční frakce) | % | 55–75 |
Kontraktilita[upravit | editovat zdroj]
Kontraktilita je vlastní inotropní aktivita myokardu nezávislá na předtížení a dotížení. Je ovlivněna ionizovaným kalciem, poddajností a dodávkou energetických substrátů myokardu.
Ukazatelem kontraktility je schopnost vyvinout tlak za časovou jednotku, v praxi se užívá :
- hodnot tepové práce levé resp. pravé komory: LVSW resp. RVSW (left/right ventriculus stroke work)
LVSW = 0,0136 x SV x (MAP − PAOP)
RVSW = 0,0136 x SV x (MPAP − CVP)
- globální ejekční frakce (GEF) a indexu srdeční funkce (CFI, cardiac function index) odvozených z parametrů měřených systémem PiCCO;
- úroveň kontraktility myokardu lze též odhadnout ze strmosti vzestupu pulzové křivky během přímého měření arteriálního tlaku.
Srdeční výdej[upravit | editovat zdroj]
V rámci možností podrobnější hemodynamiky jsme schopni určit tepový objem (stroke volume, SV). Na základě této hodnoty můžeme vypočítat srdeční výdej (cardiac output, CO), který je součinem tepového objemu a srdeční minutové frekvence (heart rate):
CO = HR × SV
Přepočtem na povrch těla získáváme cardiac index = CI.
Výpočet CO využitím Fickova vzorce:
CO = {VO2 / (CaO2 − CvO2)} × 10
Měření TK v zaklínění plicnice, PAWP[upravit | editovat zdroj]
Hodnotu PAWP měříme Swan–Ganzovým katetrem. Je výslednicí rezistence plicního řečiště a funkce levého srdce. Jeho hodnoty se blíží tlaku v levé síni. Používá se na exaktní určení CI. V pediatrii má raritní uplatnění.
- referenční hodnoty: 6–16 cm H2O (ideal 7–15 cm H2O)
Indikace zavedení Swan–Ganzova katetru:
- nejasný intravaskulární objem
- PEEP > 12 cm H2O
- srdeční selhání
- potřeba intenzivní inotropní podpory myokardu
Odkazy[upravit | editovat zdroj]
Související články[upravit | editovat zdroj]
Zdroj[upravit | editovat zdroj]
- HAVRÁNEK, Jiří: Kardiopulmonální monitoring