Speciální aplikace NMR
Difuzní MRI[upravit | editovat zdroj]
Difuzní MRI zobrazuje změny signálu způsobené difuzí molekul vody ve tkáních. Takové zobrazení je relativně nezávislé na relaxačních časech T1, T2 i na hustotě protonových jader (PD). Difuzní zobrazení se uplatňuje především při hodnocení patologických stavů mozku (stáří ischemického postižení mozku, traumatické změny mozku, posuzování buněčného složení mozkových nádorů nebo změny v důsledku Alzheimerovy choroby, autismu, schizofrenie apod.). Směr difuze může být zcela náhodný všemi směry (např. v mozkomíšním moku nebo šedé hmotě mozku) nebo omezený pouze na některé směry (např. v bílé hmotě mozku převládá difuze ve směru dlouhých vláken axonů), kdy je všesměrové difuzi bráněno bariérou např. buněčných stěn. Směr difuze lze zjistit mnohonásobným skenováním zvolené vrstvy tkáně v několika směrech. Jednotlivé směry zobrazení se získávají změnou orientace magnetických gradientů. Každý směr gradientu potom zobrazuje jiný směr difuze. V praxi se směr difuze vypočítává nejméně ze 6 směrů, obvykle však z 12 až 256 směrů. Výsledkem difuzního zobrazení může být šedoškálová mapa velikosti difuze (metoda DWI – Diffusion Weighted Imaging) nebo barevná mapa mozku (metoda DTI – Diffusion Tensor Imaging), kdy jednotlivé barvy určují jednotlivé směry difuze v dané oblasti.
Metoda DWI – Diffusion Weighted Imaging[upravit | editovat zdroj]
Při DWI intensita každého elementu obrazu (voxelu) odráží rychlosti difuze vody v dané oblasti. jelikož pohyby vody jsou vysoce dependentní na tepelných podmínkách a vlastním buněčném prostředí, měli bychom být díky DWI schopni pozorovat změny v dané tkáni a tudíž i pozorovat rané změny indikující patologické stavy. Pro ilustraci, DWI je více senzitivní k raným patologickým změnám provázejícím mrtvici než tradiční MRI. DWI se nejvíce hodí pro popis tkání, v nichž dominuje isotropický pohyb vody, tedy šedé hmoty mozkové v kůře mozkové, velkých mozkových jader anebo v těle, kde se zdá rychlost difuze vody přibližně stejná ve všech směrech.
Metoda DTI – Diffusion Tensor Imaging[upravit | editovat zdroj]
Difuzní tenzorové zobrazování (DTI) je technika magnetické rezonance, která umožňuje měřit omezenou difuzi vody ve tkáních. Rovněž poskytuje užitečné informace o struktuře různých tkání, například tkáně svalové (i srdeční) nebo prostaty.
Při DTI, každému voxelu přísluší jeden nebo více parametrů: rychlost difuze a preferovaný směr difuze. Vlastnosti každého voxelu jsou obvykle vypočítány díky příslušným vektorům, respektive tenzorům, z minimálně 6 směrů. Při některých metodách jsou stovky snímků složeny dohromady a je vygenerován výsledný obraz. Díky většímu objemu informací získaných při DTI se jedná o velice citlivou metodu umožňující nám pozorovat i velice jemné patologie. Navíc můžeme využít i získané směrové informace a sledovat neurální vlákna bílé hmoty mozkové a látky jimi transportované mozkem, tento proces se nazývá traktografie.
MR angiografie (MRA)[upravit | editovat zdroj]
Zobrazovaným parametrem v MRI může být mimo hustoty jader a relaxačních časů T1 a T2 také průtok excitovaných jader. Pohybu jader pak využívá MR angiografie (MRA), metoda zobrazující průtok krve cévami nebo tok mozkomíšního moku. K zobrazení průtoku jader MR angiografií lze
využít několika metod:
- MR angiografie karotid MRA s využitím kontrastních látek
- CE MRA (Contrast Enhanced)
- MRA bez kontrastních látek
- TOF MRA (Time of Flight)
- PC MRA (Phase Contrast)
MRA s využitím kontrastních látek[upravit | editovat zdroj]
Technika CE MRA využívá k zobrazení průtoku jader kontrastní látky. Metoda dokáže odlišit arteriální fázi (plnění tepen krví) od fáze venózní (plnění žil krví). Nejprve je pořízen srovnávací obraz bez kontrastu, poté snímek v okamžiku, kdy je kontrastní látka přítomna v tepnách a nakonec je
pořízen obraz po přestupu kontrastní látky do žilního systému. MRA obraz je vypočten jako rozdíl mezi snímkem bez kontrastu a snímky s kontrastní látkou v tepnách/žilách. Používají se kontrastní látky na bázi sloučenin kovů.
MRA bez kontrastních látek[upravit | editovat zdroj]
Metody MRA bez použití kontrastní látky jsou založeny na změnách fáze precesního pohybu částic a velikosti vektoru magnetizace v přítomnosti gradientního magnetického pole. Změna fáze ΔΦ precese je úměrná rychlosti pohybu částic v, druhé mocnině doby trvání tG gradientního pole a velikosti gradientního pole G:
ΔΦ=vt2G
Fázové změny se pak v MRA obraze projevují buď ztrátou signálu (pokles jasu) nebo ziskem signálu (zvýšení jasu). Projevují se tedy podobně jako kontrastní látky. Ztráty signálu využívá metoda PC MRA (Phase Contrast), zisku signálu využívá metoda TOF MRA (Time Of Flight).
Phase Contrast MRA[upravit | editovat zdroj]
Pokud zobrazovanou oblast vybudíme RF pulzem, potom excitované částice stacionárních tkání poskytují při detekci silný signál. Vybuzené částice krevního toku ovšem opouštějí snímanou scénu dříve, než je signál zaznamenán, a na snímku se nezobrazí. Ztráta signálu je typická pouze pro vysoké rychlosti toku, při nízkých rychlostech ke ztrátě signálu nedochází. K vymizení signálu ovšem může docházet také při rozfázování precesního pohybu částic, např. při turbulentním proudění (opačné fáze se navzájem vyruší), které se objevuje při vysokých rychlostech toku. Výsledný MRA obraz je vypočten z rozdílů mezi obrazy nasnímanými před a po aplikaci magnetického gradientu.
Time Of Flight MRA[upravit | editovat zdroj]
Pokud zobrazovanou oblast vybudíme několika rychle po sobě jdoucími RF pulzy, potom se částice stacionární tkáně excitují prvním RF pulzem, do příchodu následujícího RF pulzu nestačí plně relaxovat, aby mohla být novým pulzem vybuzena, a poskytují proto pouze slabý signál. Částice krevního toku, které vtékají nově do snímané scény naopak nebyly prvním RF pulzem excitovány, ale následujícím RF pulzem jsou vybuzeny a poskytují silný signál. Zisk signálu, tzv. efektem vtoku, se obvykle projevuje pouze v první vrstvě, do které vstupuje krevní tok. Pomalé toky zpravidla nelze zobrazit. Nevýhodou je také pokles signálu v následujících tomovrstvách, do kterých vtéká krev (např. při snímání 3D obrazu), protože částice krevního toku nestačí relaxovat.
Funkční MR[upravit | editovat zdroj]
Funkční magnetická rezonance (fMR) se spolu s progresivním vývojem statistických metod a výpočetní techniky rozvíjí jako prostředek pro vizualizaci anatomických struktur mozku zapojených do mechanismů vnímání, řízení motoriky a myšlení. Slouží tedy k funkčnímu zobrazení mozkové aktivity. Podstatou metody je změna prokrvení a objemu krve v aktivní oblasti mozkové kůry (perfuzní fMRI) a na rozdíl od standardní magnetické rezonance má schopnost detekovat dynamické změny signálu způsobené lokálním kolísáním poměru oxyhemoglobinu a deoxyhemoglobinu v závislosti
na neuronální aktivitě (BOLD – Blood Oxygenation Level Dependent). Neokysličená forma hemoglobinu má paramagnetické vlastnosti a chová se jako přirozená MR kontrastní látka a tedy v místech s jeho vyšší koncentrací dochází ke vzniku magnetických nehomogenit, kvůli kterým je rychlejší ztráta energie excitovaných protonů a tím i větší lokální úbytek radiofrekvenčního signálu. Aktivní oblast mozku, která spotřebovává více kyslíku, potom poskytuje silnější signál než okolí.
Při fMRI vyšetření se opakovaným skenováním získávají obrazy celého objemu mozku v klidu i při aktivním řešení úkolů (reakce na podnět, pohyb končetin, tvorba slov, atd.). Změny mozkové aktivity jsou měřeny z rozdílu dvojic obrazů pořízených v klidu a při mozkové činnosti.
K detekci se používá metoda Echo Planar Imagining (EPI). Ta umožňuje pomocí rychlých změn magnetického pole zaznamenávat signál z celého řezu (objemu) po jednom nebo několika radiofrekvenčních pulzech. Získaný signál se poté rozdělí na konečný počet vzorků, které v sobě mají informaci o signálu z každého místa řezu.
Funkční magnetická rezonance umožňuje specifikovat diagnostiky některých neurologických i psychiatrických onemocnění a poskytuje možnosti plánování chirurgických výkonů.
Přístrojové vybavení[upravit | editovat zdroj]
Pacient se položí do gantry (tunelu) MR přístroje a tam je vystaven silnému homogennímu magnetickému poli MR magnetu (v rozmezí 0,5–3T). Aby bylo možné odlišit signály z různých vrstev tkání, je přidáno další magnetické pole tvořené tzv. gradientovými cívkami. Pro vyšetření jednotlivých částí těla se používají povrchové cívky („orgánové cívky“). Tyto cívky slouží pro přijímání signálu v bezprostřední blízkosti vyšetřované oblasti, výsledný signál je tedy silnější (hlavová, krční páteřní, ramenní cívky atd.) a kvalita zobrazení je vyšší.
fMRI je vyšetření, při kterém je nutná spolupráce pacientů. Správné provedení zadaného úkolu je totiž zásadním bodem v celém vyšetřovacím řetězci. U některých kognitivních úloh ( např. test slovní plynulosti) je nemožné při snímání fMRI dat výkon pacienta přímo objektivizovat a ověřit tak, zda vykonával úlohu podle zadání.
Vyšetření je ovládáno počítačem a opatřená obrazová data jsou následně zpracována programy pro analýzu obrazu. Předzpracování, statistická analýza a vyhodnocení výsledků již většinou probíhá mimo vlastní MR pracoviště. Je nutné, aby bylo pracoviště stíněno a nedocházelo tak k rušení vysílacími frekvencemi radiových vln. Stěny vyšetřovací místnosti jsou izolovány Faradayovou klecí.
NMR spektroskopie[upravit | editovat zdroj]
Nukleární magnetická rezonanční spektroskopie, častěji známá jako NMR spektroskopie, je výzkumná technika, která využívá magnetických vlastností některých atomových jader k určení fyzikálních a chemických vlastností atomů nebo molekul, v nichž jsou tato jádra obsažena. NMR spektroskopie je založena na principu nukleární magnetické rezonance a poskytuje podrobné informace o struktuře, dynamice, reakčním stavu a chemickém prostředí molekul. Intramolekulární magnetické pole kolem atomu v molekule mění rezonanční frekvenci a tím zajišťuje přístup k podrobným informacím o elektronové struktuře molekuly.
NMR spektroskopie umožňuje neinvazivní sledování biochemických pochodů v různých orgánech jak za normálních, tak patologických podmínek. NMR spektroskopie je jednou z mála technik, které umožňují stanovení zastoupení metabolitů ve tkáních in vivo, a proto bývá někdy označována jako in vivo NMR biopsie.
Typy NMR spektroskopie[upravit | editovat zdroj]
Protonová 1H NMR[upravit | editovat zdroj]
U protonové 1H NMR spektroskopie je možné získat informace o zastoupení a koncentraci některých sloučenin obsahující vodík. Cívka je zaostřena na frekvenční pásmo, ve kterém rezonuje vodík v různých sloučeninách (63MHz) − N-acetyl aspartát NAA, kreatin, cholin, myoinositol, laktát, glutamát, aspartát, GABA. Tato metoda se uplatňuje především ve sledování metabolismu mozkové tkáně.
Fosforová 31P spektroskopie[upravit | editovat zdroj]
U fosforové 31P spektroskopie získáváme informace o relativním zastoupení metabolitů obsahující fosfor, který je přítomen především v makroergních fosfátech (fosfomonoestery PME, fosfodiestery PDE, ATP, ADP, fosfokreatin, anorganický fosfát (Pi)). Fosforová spektroskopie (31P MRS) je vhodná pro popis energetického metabolismu tkáně či orgánu. Nejčastěji je využívána k vyšetřování pacientů s metabolickým onemocněnm svalů. V posledních letech byly metodou fosforové spektroskopie sledovány změny energetického metabolismu jater.
Využití[upravit | editovat zdroj]
Nejvíce je NMR spektroskopie využívána v chemii a biochemii ke zkoumání vlastností organických molekul. Metoda umožňuje neinvazivní, in vivo měření koncentrace řady chemických sloučenin v CNS. Slouží také k hodnocení různých biologických procesů − membránový a energetický metabolismus, koncentrace excitačních a inhibičních neurotransmiterů. Údaje získané pomocí NMR spektroskopie mohou poskytnout nový pohled na příčiny, diagnostiku i terapii řady neuropsychiatrických chorob.