Světlocitlivé buňky a jejich funkce
Světlocitlivé buňky sítnice jsou buňky vytvářející nervovou stimulaci na základě absorpce fotonu přicházejícího na sítnici. Tyto buňky jsou dvojího typu: tyčinky a čípky. Čípky jsou citlivé na světlo různé barvy, čili různé vlnové délky, různé intenzity a různé sytosti barev. Jsou prvními neurony sítnice. Zajišťují fotopické vidění, jsou zodpovědné za zrakovou ostrost. Nacházejí se v nejhojnějším počtu v centrální jamce (fovea centralis), což je malá jamka ve žluté skvrně. Směrem k periferii sítnice jejich hustota postupně klesá. Celkově nacházíme na sítnici 6 milionů čípků. Rozlišujeme 3 typy čípků, které je možné rozlišit pouze podle pigmentu v cytoplasmě, nikoliv podle tvaru buňky.
Čípek | Typ | Citlivost | Největší diferenciální citlivost |
---|---|---|---|
S – krátké (z anglického short) | β | 400–500 nm | 420–440 nm |
M – středně dlouhé (z anglického medium) | γ | 450–630 nm | 534–555 nm |
L – dlouhé (z anglického long) | ρ | 500–700 nm | 564–580 nm |
Tyčinky jsou světlocitlivé buňky reagující na nižší intenzitu osvětlení než čípky, ale nejsou schopny rozeznávat barvy. Zajišťují skotopické vidění.
Stavba čípků a tyčinek[upravit | editovat zdroj]
Čípky v porovnání s tyčinkami jsou většinou tlustší, ovšem v centrální jamce jsou stejně dlouhé a široké jako tyčinky. Na světlocitlivé buňce rozlišujeme zevní část – je to fotosenzitivní část buňky, oblast jádra a oblast synapsí. Zevní část je rozdělená na vnitřní výběžek, zevní výběžek a přechodní zónu. Světlocitlivý pigment rhodopsin (u tyčinek), iodopsin u čípků je situovaný ve diskovitých membránových strukturách vnějšího výběžku. U čípků mají tyto struktury lahvovitý tvar, u tyčinek jsou delší. Vnitřní výběžek slouží jako energetická zásobárna pro proces vidění, proto tam najdeme četné mitochondrie, nacházejí se tam i ribosomy produkující proteiny pro proces vidění.
Funkce[upravit | editovat zdroj]
Funkci světlocitlivých buněk lze shrnout na proměnu světelné energie dopadajícího světla na energii pohybu atomů a vyvolat uvolnění neurotransmiteru do synaptického prostoru mezi světlocitlivou buňkou a bipolárním neuronem, se kterým jsou tyto buňky spojeny pomocí synapse . V nestimulované světlocitlivé buňce je udržovaný transmembránový potenciál na buněčné membráně pomocí iontových kanálů. Kanály transportující ionty Na+ dovnitř buňky a kanály transportující ionty K+ mimo buňku. Otevření kanálů pro Na+ je podmíněno cGMP (cyklický guanosínmonofosfát). Kanály pro K+ jsou otevřeny permanentně a udržují negativní transmembránový potenciál (–40 mV) na buněčné membráně. Světlocitlivý pigment tyčinek rhodopsin je složený z proteinové části – opsinu a z neproteinové části – 11-cis-retinalu. U čípků se nachází podobný světlocitlivý pigment iodopsin. Jednotlivé druhy čípků mají trochu odlišnou opsinovou část pigmentu, proto jsou citlivé pro světlo rozličné vlnové délky.
Stimulace buňky po čas osvětlení[upravit | editovat zdroj]
- Při stimulaci světlocitlivé buňky fotonem světlocitlivý 11-cis-retinal podstoupí isomerizaci na trans formu.
- Trans forma retinalu je delší molekula, proto nesedí na fixačním místě na opsinu a rhodopsin se konformačně změní na metarhodopsin II. Metarhodopsin je však nestabilní, proto se z opsinu uvolní retinal.
- Opsin aktivuje regulační protein transducin. Transducin je složený ze tří podjednotek alfa, beta, gama a v cytoplasmě váže molekulu GDP na alfa podjednotku.
- Aktivace transducinu způsobí navázaní GTP místo GDP.
- Transducin se rozpadne na své podjednotky.
- Komplex alfa podjednotky a GTP aktivuje enzym fosfodiesterázu, který mění cGMP na 5'GMP.
- Pokles koncentrace cGMP způsobí uzavření kanálů pro Na+ což vyvolá hyperpolarizaci buňky (membránový potenciál se změní z –40 mV na –70 mV).
- Hyperpolarizace způsobí uzavření napěťových kanálů pro vstup iontů Ca2+.
- Pokles koncentrace Ca2+ ve cytoplasmě zastaví uvolňování neurotransmiteru do synaptického prostoru v oblasti synapsí.
Obnovení rhodopsinu[upravit | editovat zdroj]
- Protein GAP (GTPase activating protein) interaguje s alfa podjednotkou transducinu a způsobí hydrolýzu navázané molekuly GTP na GDP. Tohle má za následek snížení aktivity fosfodiesterázy, proto se transformace cGMP na 5'GMP zpomalí.
- S poklesem koncentrace Ca2+ se aktivuje enzym guanylát cykláza, která stimuluje transformaci GTP na cGMP. Při vyšší koncentraci cGMP se znovu otevřou kanály pro Na+ a transmembránový potenciál se vrátí na normální hodnotu (–40 mV).
- Enzym rhodopsin kináza a protein arrestin deaktivují metarhodopsin II.
- Trans forma retinalu se transportuje do pigmentových buněk, kde se redukuje na retinol. Retinol je transportován spět do tyčinek, kde se změní na 11-cis-retinal schopen se vázat na opsin.
- Opsin a 11-cis-retinal se navážou na sebe a vznikne rhodopsin.
Výše je popsán způsob funkce tyčinek. U čípků se tento způsob liší v následovném:
- čípky obsahují namísto rhodopsinu jiný pigment – iodopsin;
- neurotransmiter pro komunikaci s bipolární buňkou je u tyčinek glutamát, zatím co u čípků je to acetylcholin.