Elektron-pozitronové páry: Porovnání verzí
Feedback

Z WikiSkript

(doplneni clanku)
Bez shrnutí editace
Řádek 15: Řádek 15:


[[Soubor:Pairproduction.png|thumb|Tvorba elektron-pozitronového páru]]
[[Soubor:Pairproduction.png|thumb|Tvorba elektron-pozitronového páru]]
Při energiích fotonů teoreticky nad 1,02 MeV, prakticky však mnohem vyšších, dochází k '''přeměně fotonu''' blízko atomového jádra na '''[[pozitron]]''' a '''[[elektron]]'''. Přitom je nutné, aby se tak stalo v blízkosti atomového jádra nebo jiné částice, která může převzít část hybnosti fotonu (jelikož hybnost pozitronu a elektronu je nižší). Samovolná přeměna fotonu na elektron a pozitron není možná při jeho pohybu ve vakuu z důvodu zákona zachování hybnosti (součet hybností vzniklého elektronu a pozitronu je menší než hybnost dodaná fotonem). Samotná proměna probíhá v důsledku elektrického pole atomového jádra (čím větší náboj jádro má, tím je větší pravděpodobnost proměny). Kinetická energie vytvořeného elektron-pozitronového páru je rozdělena mezi obě částice náhodně.
Při energiích fotonů teoreticky nad 1,02 MeV, prakticky však mnohem vyšších, dochází k '''přeměně fotonu''' blízko atomového jádra na '''[[pozitron]]''' a '''[[elektron]]'''. Přitom je nutné, aby se tak stalo v blízkosti atomového jádra nebo jiné částice, která může převzít část hybnosti fotonu (jelikož hybnost pozitronu a elektronu je nižší). Samovolná přeměna fotonu na elektron a pozitron není možná při jeho pohybu ve vakuu z důvodu [[Zákon zachování hybnosti|zákona zachování hybnosti]] (součet hybností vzniklého elektronu a pozitronu je menší než hybnost dodaná fotonem). Samotná proměna probíhá v důsledku elektrického pole atomového jádra (čím větší náboj jádro má, tím je větší pravděpodobnost proměny). Kinetická energie vytvořeného elektron-pozitronového páru je rozdělena mezi obě částice náhodně.


Pomocí následující rovnice lze vyjádřit energetickou bilanci daného děje:
Pomocí následující rovnice lze vyjádřit energetickou bilanci daného děje:

Verze z 4. 12. 2014, 22:04

Ke tvorbě elektron-pozitronových párů dochází při interakci vysokoenergetického γ záření s elektronovým obalem atomu. Je to energeticky nejvyšší možnost ze tří interakcí γ záření s obalem.

Tvorba elektron-pozitronového páru

Při energiích fotonů teoreticky nad 1,02 MeV, prakticky však mnohem vyšších, dochází k přeměně fotonu blízko atomového jádra na pozitron a elektron. Přitom je nutné, aby se tak stalo v blízkosti atomového jádra nebo jiné částice, která může převzít část hybnosti fotonu (jelikož hybnost pozitronu a elektronu je nižší). Samovolná přeměna fotonu na elektron a pozitron není možná při jeho pohybu ve vakuu z důvodu zákona zachování hybnosti (součet hybností vzniklého elektronu a pozitronu je menší než hybnost dodaná fotonem). Samotná proměna probíhá v důsledku elektrického pole atomového jádra (čím větší náboj jádro má, tím je větší pravděpodobnost proměny). Kinetická energie vytvořeného elektron-pozitronového páru je rozdělena mezi obě částice náhodně.

Pomocí následující rovnice lze vyjádřit energetickou bilanci daného děje:

Z uvedeného vztahu vyplývá, že energie fotonu musí být větší než energie, která představuje součet dvou klidových hmotností elektronu (součet klidové energie elektronu a pozitronu jsou stále stejné).

Vzniklé částice ztrácejí svou energii při interakcích s okolním prostředím, tj. ionizací nebo excitací. Pozitron se však většinou spojuje s elektronem za procesu anihilace a vyzáří tak dvě kvanta elektromagnetického záření o energii 511 keV. Tato kvanta se pohybují opačným směrem.

Odkazy

Související články

Použitá literatura

  • NAVRÁTIL, Leoš a Jozef ROSINA, et al. Medicínská biofyzika. 1. vydání. Praha : Grada, 2005. 524 s. s. 352-353. ISBN 80-247-1152-4.