Barevnost látek
Feedback

Z WikiSkript

Verze z 31. 5. 2010, 13:24, kterou vytvořila Lampa (Diskuse | příspěvky) (red)

Řada látek obsahuje valenční elektron, který může být excitován do vyšší energetické hladiny elektromagnetickým zářením. Taková látka pak absorbuje záření o vlnové délce odpovídající rozdílu energií obou elektronových hladin. Pokud absorbované záření leží ve viditelné části spektra, bude se lidskému oku látka jevit barevná (bude mít barvu doplňkovou k barvě absorbovaného světla).

Absorbovaná vlnová délka Barva absorbovaného světla Barva látky
400 – 435 fialová žlutozelená
435 – 480 modrá žlutá
480 – 490 zelenomodrá oranžová
490 – 500 modrozelená červená
500 – 560 zelená purpurová
560 – 580 žlutozelená fialová
580 – 595 žlutá modrá
595 – 605 oranžová zelenomodrá
605 – 670 červená modrozelená


Předpovědět barvu látky na základě její chemické struktury bohužel není jednoduché, ani není možné na základě absorpčního spektra jednoznačně usuzovat na složení látky. Z našeho hlediska jsou však významné tři skupiny látek, které jsou často barevné:

  1. Látky obsahující systém konjugovaných dvojných vazeb, jejichž molekula není symetrická. Představíme-li si symetrický konjugovaný systém dvojných vazeb, může existovat ve dvou rezonančních stavech, které jsou energeticky rovnocenné:
    Rezonance.jpg
    Přítomnost asymetrického substituentu způsobí, že se energie obou stavů budou lišit. Rozdíl energií přitom často odpovídá energii fotonu z viditelné části spektra. Typickými zástupci mohou být barviva s polymethinovým řetězcem (–CH=CH–CH=CH–) nebo azobarviva (–N=N–). Podobně se chovají i látky s aromatickými či heterocyklickými strukturami vázanými na společný centrální atom (např. trifenylmetanová barviva).

  2. Rovněž d a f valenční elektrony mnohdy podmiňují barvu sloučeniny. Bývají přítomny v koordinačně kovalentních vazbách komplexních sloučenin. Tak např. bezvodý síran měďnatý CuSO4 je bezbarvý, zatímco jeho pentahydrát CuSO4•5H2O i vodný roztok mají modrou barvu: v obou případech totiž měď vstupuje do komplexu s vodou <chemform>[Cu(H2O)4]2+</chemform>. Podobně bývají barevné i komplexní sloučeniny dalších přechodných kovů (Fe, Cu, Cr, Mn, Ni, Co), komplexně vázaný kov je i v barevných bílkovinách hemoglobinu a cytochromech.

  3. Barevné jsou také ionty, které jako centrální atom obsahují přechodný kov s vysokým oxidačním číslem, např. <chemform>MnO4-</chemform>, Cr2O72-.


Analytické metody používané v lékařské chemii a biochemii využívají všech tří skupin barevných sloučenin. Systémy konjugovaných dvojných vazeb často vznikají v reakcích, v nichž analyt kondenzuje s vhodným chromogenem (např. kreatinin s kyselinou pikrovou v Jaffého reakci, diazokopulační reakce při průkazu bilirubinu), nebo vznikají oxidací chromogenu, který obsahuje o jednu dvojnou vazbu méně (oxidace derivátů benzidinu v peroxidázových reakcích). Tvorby barevných komplexů se využívá např. při stanovení bílkovin tzv. biuretovou reakcí (komplexy <chemform>Cu2+</chemform> s O a N peptidových vazeb) nebo při průkazech řady látek např. pomocí <chemform>FeCl3</chemform>. Změny barvy při redukci <chemform>Cr6+</chemform> na <chemform>Cr3+</chemform> se využívá např. při průkazu ethanolu ve vydechovaném vzduchu.


Absorpce monochromatického světla může být podmíněna i jinými ději, než je excitace elektronu. Jde především o změny různých oscilačních energií atomů v molekulách a rotačních energií celých molekul. Tyto principy se využívají spíše ve fluorimetrii. Z hlediska lékařské biochemie jsou mnohem méně významné než výše uvedené principy.